Cloud Native应用交付

  • 首页
  • 关于本站
  • 个人介绍
  • Downloads
  • Repo
    • Github
    • Container
  • F5
    • F5 Python SDK
    • F5-container
    • F5-LBaaS
  • 社交
    • 联系我
    • 微信/微博
    • 公众号
    • 打赏赞助
行至水穷处 坐看云起时
Cloud Native Application Services: cnadn.net
  1. 首页
  2. 化云为雨/Openstack
  3. 正文

【转】Vxlan基础理解

2014年12月7日 7147点热度 1人点赞 0条评论
一 . 为什么需要Vxlan
1. vlan的数量限制
   4096个vlan远不能满足大规模云计算数据中心的需求
2. 物理网络基础设施的限制
   基于IP子网的区域划分限制了需要二层网络连通性的应用负载的部署
3. TOR交换机MAC表耗尽
    虚拟化以及东西向流量导致更多的MAC表项
4. 多租户场景
    IP地址重叠?
二. 什么是Vxlan
1. Vxlan报文
    vxlan(virtual Extensible LAN)虚拟可扩展局域网,是一种overlay的网络技术,使用MAC in UDP的方法进
行封装,共50字节的封装报文头。具体的报文格式如下:

(1) vxlan header
    共计8个字节,目前使用的是Flags中的一个8bit的标识位和24bit的VNI(Vxlan Network identifier),
其余部分没有定义,但是在使用的时候必须设置为0x0000。
(2) 外层的UDP报头
     目的端口使用4798,但是可以根据需要进行修改。同事UDP的校验和必须设置成全0。
(3) IP报文头
     目的IP地址可以是单播地址,也可以是多播地址。单播情况下,目的IP地址是Vxlan Tunnel End Point
(VTEP)的IP地址。在多播情况下引入VXLAN管理层,利用VNI和IP多播组的映射来确定VTEPs。???
  • protocol:设置值为0x11,显示说明这是UDP数据包
  • Source ip: 源vTEP_IP;
  • Destination ip: 目的VTEP IP。
(4) Ethernet Header
  • Destination Address:目的VTEP的Mac 地址,即为本地下一跳的地址(通常是网关Mac 地址);
  • VLAN: VLAN Type被设置为0x8100, 并可以设置Vlan Id tag(这就是vxlan的vlan 标签)。
  • Ethertype:设置值为0x8000,指明数据包为IPv4的。
补充:VTEP的作用?
     用于对VXLAN报文进行封装/解封装,包括ARP请求报文和正常的VXLAN数据报文,在一段封装报文
后通过隧道向另一端VTEP发送封装报文,另一端VTEP接收到封装的报文解封装后根据封装的MAC地址
进行装法。VTEP可由支持VXLAN的硬件设备或软件来实现。
   从封装的结构上来看,VXLAN提供了将二层网络overlay在三层网络上的能力,VXLAN Header中的VNI有
24个bit,数量远远大于4096,并且UDP的封装可以穿越三层网络,比VLAN有更好的扩展性。
2. Vxlan的数据和控制平面
  (1) 数据平面---隧道机制
     已经知道,VTEP为虚拟机的数据包加上了层包头,这些新的报头之有在数据到达目的VTEP后才会被去掉。
中间路径的网络设备只会根据外层包头内的目的地址进行数据转发,对于转发路径上的网络来说,一个Vxlan
数据包跟一个普通IP包相比,出了个头大一点外没有区别。
     由于VXLAN的数据包在整个转发过程中保持了内部数据的完整,因此VXLAN的数据平面是一个基于隧道
的数据平面。
(2) 控制平面----改进的二层协议
     VXLAN不会在虚拟机之间维持一个长连接,所以VXLAN需要一个控制平面来记录对端地址可达情况。控制
平面的表为(VNI,内层MAC,外层vtep_ip)。Vxlan学习地址的时候仍然保存着二层协议的特征,节点之间不会
周期性的交换各自的路由表,对于不认识的MAC地址,VXLAN依靠组播来获取路径信息(如果有SDN Controller,
可以向SDN单播获取)。
    另一方面,VXLAN还有自学习的功能,当VTEP收到一个UDP数据报后,会检查自己是否收到过这个虚拟机的
数据,如果没有,VTEP就会记录源vni/源外层ip/源内层mac对应关系,避免组播学习。
3. VxlanARP请求
(1) vxlan初始化
 VM1和VM2连接到VXLAN网络(VNI)100,两个VXLAN主机加入IP多播组239.119.1.1
(2) ARP请求

   1) VM1以广播的形式发送ARP请求;
   2) VTEP1封装报文。打上VXLAN标识为100,外层IP头DA为IP多播组(239.119.1.1),SA为IP_VTEP1.
   3) VTEP1在多播组内进行多播;
   4) VTEP2解析接收到多播报文。填写流表(VNI, 内层mac地址,外层Ip地址),并在本地VXLAN标识为100的范围内
       广播(是VXLAN的用武之地)。
   5) VM2对接收到的ARP请求进行响应;
(3) ARP应答

  1) VM2准备ARP响应报文后向VM1发送响应报文

2)VTEP2接收到VM2的响应报文后把它封装在ip单播报文中(VXLAN标识依然为100),然 后向VM1发送单播

3)VTEP1接收到单播报文后,学习内层MAC到外层ip地址的映射,解封装并根据被封装内容的目的MAC地址转发给VM1

       4)VM1接收到ARP应答报文,ARP交互结束
4  数据传输
    (1)  ARP请求应答之后,VM1知道了VM2的Mac地址,并且要向VM2通信(注意,VM1是以TCP的方法向VM2发送数据的)。
VTEP1 收到VM1发送数据包,用MAC地址从流表中检查VM1与VM2是否属于用一个VNI。两个VM不但位于同一个VNI中
(不在同一个VNI中出网关),并且VTEP1已经知道了VM2的所有地址信息(MAC和VTEP2_IP)。VTEP1封装新的数据包。然后
交给上联交换机。
   (2) 上联交换机收到服务器发来的UDP包,对比目的IP地址和自己的路由表,然后将数据报转发给相应的端口。
   (3) 目的VTEP收到数据包后检查器VNI,如果UDP报中VNI与VM2的VNI一致,则将数据包解封装后交给VM2进一步处理。至此
一个数据包传输完成。整个Vxlan相关的行为(可能穿越多个网关)对虚拟机来说是透明的,虚拟机不会感受传输的过程。
    虽然VM1与VM2之间启动了TCP来传输数据,但数据包一路上实际是以UDP的形式被转发,两端的VTEP并不会检查数据是否
正确或者顺序是否完整,所有的这些工作都是在VM1和VM2在接收到解封装的TCP包后完成的。也就是说如果说如果被UDP封装
的是TCP连接,那么UDP和TCP将做为两个独立的协议栈各自工作,相互之间没有交互。
5 Vxlan网关

 如果需要VXLAN网络和非VXLAN网络连接,必须使用VXLAN网关才能把VXLAN网络和外部网络进行桥接和
完成VXLAN ID和VLAN ID之间的映射和路由,和VLAN一样,VXLAN网络之间的通信也需要三层设备的支持,
即VXLAN路由的支持。同样VXLAN网关可由硬件和软件来实现。
 从封装的结构上来看,VXLAN提供了将二层网络overlay在三层网络上的能力,VXLAN Header中的VNI有
24个bit,数量远远大于4096,并且UDP的封装可以穿越三层网络,比VLAN有更好的扩展性。
6.部署
(1) 纯VXLAN部署场景
  对于连接到VXLAN内的虚拟机,由于虚拟机的VLAN信息不再作为转发的依据,虚拟机的迁移也就
不再受三层网关的限制,可以实现跨越三层网关的迁移。
(2) VXLAN与VLAN混合部署
   为了实现VLAN和VXLAN之间互通,VXLAN定义了VXLAN网关。VXLAN网关上同时存在两种类型的端口:VXLAN端口
和普通端口。
   当收到从VXLAN网络到普通网络的数据时,VXLAN网关去掉外层包头,根据内层的原始帧头转发到普通端口上;当有数据
从普通网络进入到VXLAN网络时,VXLAN网关负责打上外层包头,并根据原始VLAN ID对应到一个VNI,同时去掉内层包头
的VLAN ID信息。相应的如果VXLAN网关发现一个VXLAN包的内层帧头上还带有原始的二层VLAN ID,会直接将这个包丢弃。
之所以这样,是VLAN ID是一个本地信息,仅仅在一个地方的二层网络上其作用,VXLAN是隧道机制,并不依赖VLAN ID进行
转发,也无法检查VLAN ID正确与否。因此,VXLAN网关连接传统网络的端口必须配置ACCESS口,不能启用TRUNK口。

相关文章

  • F5 lbaas agent v1对vlan模式下始终配置为tagged vlan的问题解决-备忘
  • Openstack icehouse 配置vlan网络 备忘
  • heat template guide
  • openstack heat模板之配置基本LB到F5 BIGIP
  • Mitaka Openstack 排错备忘
本作品采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可
标签: 云计算,虚拟化,vxlan
最后更新:2014年12月7日

纳米

linjing.io

打赏 点赞
下一篇 >
页面AI聊天助手

纳米

linjing.io

☁️迈向Cloud Native ADC ☁️

认证获得:
TOGAF: ID 152743
Kubernetes: CKA #664
Microsoft: MCSE MCDBA
Cisco: CCNP
Juniper: JNCIS
F5:
F5 Certified Solution Expert, Security
F5 Certified Technology Specialist, LTM/GTM/APM/ASM
F5 Certified BIG-IP Administrator
  • 点击查看本博技术要素列表
  • 归档
    分类
    • AI
    • Automation
    • Avi Networks
    • Cisco ACI
    • CISCO资源
    • F5 with ELK
    • F5-Tech tips
    • F5技术
    • Juniper
    • Linux
    • NGINX
    • SDN
    • ServiceMesh
    • WEB编程
    • WINDOWS相关
    • 业界文章
    • 交换机技术
    • 化云为雨/Openstack
    • 协议原理
    • 容器/k8s
    • 我的工作
    • 我的生活
    • 网站技术
    • 路由器技术
    • 项目案例
    标签聚合
    network openstack irule bigip k8s F5 docker nginx envoy neutron DNS api istio gtm flannel
    最近评论
    汤姆 发布于 8 个月前(09月10日) 嗨,楼主,里面的json怎么下载啊,怎么收费啊?
    汤姆 发布于 8 个月前(09月09日) 大佬,kib的页面可以分享下吗?谢谢
    zhangsha 发布于 1 年前(05月12日) 资料发给我下,谢谢纳米同志!!!!lyx895@qq.com
    李成才 发布于 1 年前(01月02日) 麻烦了,谢谢大佬
    纳米 发布于 1 年前(01月02日) 你好。是的,因为以前下载系统插件在一次升级后将所有的下载生成信息全弄丢了。所以不少文件无法下载。DN...
    浏览次数
    • Downloads - 183,766 views
    • 联系我 - 118,966 views
    • 迄今为止最全最深入的BIGIP-DNS/GTM原理及培训资料 - 116,497 views
    • Github - 103,659 views
    • F5常见log日志解释 - 79,774 views
    • 从传统ADC迈向CLOUD NATIVE ADC - 下载 - 74,623 views
    • Sniffer Pro 4 70 530抓包软件 中文版+视频教程 - 74,320 views
    • 迄今为止最全最深入的BIGIP-DNS/GTM原理及培训资料 - 67,770 views
    • 关于本站 - 60,905 views
    • 这篇文档您是否感兴趣 - 55,493 views
    链接表
    • F5SE创新
    • Jimmy Song‘s Blog
    • SDNlab
    • Service Mesh社区
    • 三斗室
    • 个人profile
    • 云原生社区

    COPYRIGHT © 2023 Cloud Native 应用交付. ALL RIGHTS RESERVED.

    Theme Kratos Made By Seaton Jiang

    京ICP备14048088号-1

    京公网安备 11010502041506号