running logs:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
Failure while loading azureml_run_type_providers. Failed to load entrypoint azureml.PipelineRun = azureml.pipeline.core.run:PipelineRun._from_dto with exception (azureml-core 1.47.0 (/azureml-envs/azureml_862fbd3b8df44d2c582aa46cf5a23700/lib/python3.8/site-packages), Requirement.parse('azureml-core~=1.54.0')). Failure while loading azureml_run_type_providers. Failed to load entrypoint azureml.ReusedStepRun = azureml.pipeline.core.run:StepRun._from_reused_dto with exception (azureml-core 1.47.0 (/azureml-envs/azureml_862fbd3b8df44d2c582aa46cf5a23700/lib/python3.8/site-packages), Requirement.parse('azureml-core~=1.54.0')). Failure while loading azureml_run_type_providers. Failed to load entrypoint azureml.StepRun = azureml.pipeline.core.run:StepRun._from_dto with exception (azureml-core 1.47.0 (/azureml-envs/azureml_862fbd3b8df44d2c582aa46cf5a23700/lib/python3.8/site-packages), Requirement.parse('azureml-core~=1.54.0')). Failure while loading azureml_run_type_providers. Failed to load entrypoint azureml.scriptrun = azureml.core.script_run:ScriptRun._from_run_dto with exception (cryptography 42.0.4 (/azureml-envs/azureml_862fbd3b8df44d2c582aa46cf5a23700/lib/python3.8/site-packages), Requirement.parse('cryptography!=1.9,!=2.0.*,!=2.1.*,!=2.2.*,<41')). Session_id = 9f298848-ea03-489c-86b5-d39308b98481 Invoking module by urldecode_invoker 0.0.8. Module type: official module. Using runpy to invoke module 'azureml.studio.modulehost.module_invoker'. 2024-12-27 09:47:34,900 studio.modulehost INFO Reset logging level to DEBUG 2024-12-27 09:47:34,900 studio.modulehost INFO Load pyarrow.parquet explicitly: <module 'pyarrow.parquet' from '/azureml-envs/azureml_862fbd3b8df44d2c582aa46cf5a23700/lib/python3.8/site-packages/pyarrow/parquet/__init__.py'> 2024-12-27 09:47:34,900 studio.core INFO execute_with_cli - Start: 2024-12-27 09:47:34,900 studio.modulehost INFO | ALGHOST 0.0.182 RuntimeError: module compiled against API version 0x10 but this version of numpy is 0xf . Check the section C-API incompatibility at the Troubleshooting ImportError section at https://numpy.org/devdocs/user/troubleshooting-importerror.html#c-api-incompatibility for indications on how to solve this problem . IPython could not be loaded! 2024-12-27 09:47:36,155 studio.modulehost INFO | CLI arguments parsed: {'module_name': 'azureml.studio.modules.ml.train.train_generic_model.train_generic_model', 'OutputPortsInternal': {'Trained model': '/mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/Trained_model'}, 'InputPortsInternal': {'Untrained model': '/mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Untrained_model', 'Dataset': '/mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Dataset'}, 'ModuleParameters': {'Label column': '%7B%22isFilter%22%3Atrue%2C%22rules%22%3A%5B%7B%22exclude%22%3Afalse%2C%22ruleType%22%3A%22ColumnNames%22%2C%22columns%22%3A%5B%22rentals%22%5D%7D%5D%7D', 'Model explanations': 'False'}} 2024-12-27 09:47:36,357 studio.modulehost INFO | Invoking ModuleEntry(azureml.studio.modules.ml.train.train_generic_model.train_generic_model; TrainModelModule; run) 2024-12-27 09:47:36,357 studio.core DEBUG | Input Ports: 2024-12-27 09:47:36,357 studio.core DEBUG | | Untrained model = <azureml.studio.modulehost.cli_parser.CliInputValue object at 0x14911d5b93d0> 2024-12-27 09:47:36,357 studio.core DEBUG | | Dataset = <azureml.studio.modulehost.cli_parser.CliInputValue object at 0x14911d5b9460> 2024-12-27 09:47:36,357 studio.core DEBUG | Output Ports: 2024-12-27 09:47:36,357 studio.core DEBUG | | Trained model = /mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/Trained_model 2024-12-27 09:47:36,357 studio.core DEBUG | Parameters: 2024-12-27 09:47:36,357 studio.core DEBUG | | Label column = %7B%22isFilter%22%3Atrue%2C%22rules%22%3A%5B%7B%22exclude%22%3Afalse%2C%22ruleType%22%3A%22ColumnNames%22%2C%22columns%22%3A%5B%22rentals%22%5D%7D%5D%7D 2024-12-27 09:47:36,357 studio.core DEBUG | | Model explanations = False 2024-12-27 09:47:36,358 studio.core DEBUG | Environment Variables: 2024-12-27 09:47:36,358 studio.core DEBUG | | AZUREML_DATAREFERENCE_DATASET = /mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Dataset 2024-12-27 09:47:36,358 studio.core DEBUG | | AZUREML_DATAREFERENCE_Dataset = /mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Dataset 2024-12-27 09:47:36,358 studio.core DEBUG | | AZUREML_DATAREFERENCE_UNTRAINED_MODEL = /mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Untrained_model 2024-12-27 09:47:36,358 studio.core DEBUG | | AZUREML_DATAREFERENCE_Untrained_model = /mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Untrained_model 2024-12-27 09:47:36,358 studio.core INFO | Reflect input ports and parameters - Start: 2024-12-27 09:47:36,358 studio.core INFO | | Handle input port "Untrained model" - Start: 2024-12-27 09:47:36,358 studio.core INFO | | | Mount/Download dataset to '/mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Untrained_model' - Start: 2024-12-27 09:47:36,358 studio.modulehost DEBUG | | | | Content of directory /mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Untrained_model: 2024-12-27 09:47:36,364 studio.modulehost DEBUG | | | | | _meta.yaml 2024-12-27 09:47:36,364 studio.modulehost DEBUG | | | | | data.ilearner 2024-12-27 09:47:36,364 studio.modulehost DEBUG | | | | | model_spec.yaml 2024-12-27 09:47:36,364 studio.core INFO | | | Mount/Download dataset to '/mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Untrained_model' - End with 0.0061s elapsed. 2024-12-27 09:47:36,369 studio.core INFO | | | Try to read from /mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Untrained_model via meta - Start: 2024-12-27 09:47:36,411 studio.common INFO | | | | Load meta data from directory successfully, data=ModelDirectory(meta={'type': 'ModelDirectory', 'extension': {}, 'model': 'model_spec.yaml'}), type=<class 'azureml.studio.core.io.model_directory.ModelDirectory'> 2024-12-27 09:47:36,411 studio.common INFO | | | | Load ModelDirectory successfully, data=<azureml.studio.modules.ml.initialize_models.regressor.linear_regressor.linear_regressor.OrdinaryLeastSquaresRegressor object at 0x14911d5b9400> 2024-12-27 09:47:36,411 studio.core INFO | | | Try to read from /mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Untrained_model via meta - End with 0.0417s elapsed. 2024-12-27 09:47:36,411 studio.core INFO | | Handle input port "Untrained model" - End with 0.0531s elapsed. 2024-12-27 09:47:36,411 studio.core INFO | | Handle input port "Dataset" - Start: 2024-12-27 09:47:36,411 studio.core INFO | | | Mount/Download dataset to '/mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Dataset' - Start: 2024-12-27 09:47:36,411 studio.modulehost DEBUG | | | | Content of directory /mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Dataset: 2024-12-27 09:47:36,427 studio.modulehost DEBUG | | | | | _meta.yaml 2024-12-27 09:47:36,427 studio.modulehost DEBUG | | | | | _samples.json 2024-12-27 09:47:36,427 studio.modulehost DEBUG | | | | | data.dataset 2024-12-27 09:47:36,427 studio.modulehost DEBUG | | | | | data.dataset.parquet 2024-12-27 09:47:36,427 studio.modulehost DEBUG | | | | | data.visualization 2024-12-27 09:47:36,432 studio.modulehost DEBUG | | | | | schema/_schema.json 2024-12-27 09:47:36,432 studio.core INFO | | | Mount/Download dataset to '/mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Dataset' - End with 0.0204s elapsed. 2024-12-27 09:47:36,437 studio.core INFO | | | Try to read from /mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Dataset via meta - Start: 2024-12-27 09:47:36,607 studio.common INFO | | | | Load DataTableMeta successfully, path=data.dataset 2024-12-27 09:47:36,609 studio.common INFO | | | | Load meta data from directory successfully, data=DataFrameDirectory(meta={'type': 'DataFrameDirectory', 'visualization': [{'type': 'Visualization', 'path': 'data.visualization'}], 'extension': {'DataTableMeta': 'data.dataset'}, 'format': 'Parquet', 'data': 'data.dataset.parquet', 'samples': '_samples.json', 'schema': 'schema/_schema.json'}), type=<class 'azureml.studio.common.datatable.data_table_directory.DataTableDirectory'> 2024-12-27 09:47:36,627 studio.core INFO | | | Try to read from /mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Dataset via meta - End with 0.1898s elapsed. 2024-12-27 09:47:36,627 studio.core INFO | | Handle input port "Dataset" - End with 0.2160s elapsed. 2024-12-27 09:47:36,628 studio.modulehost INFO | | Parse ColumnSelection parameter 2024-12-27 09:47:36,628 studio.modulehost INFO | | Parse bool parameter 2024-12-27 09:47:36,628 studio.core INFO | Reflect input ports and parameters - End with 0.2704s elapsed. 2024-12-27 09:47:36,628 studio.core INFO | TrainModelModule.run - Start: 2024-12-27 09:47:36,628 studio.core DEBUG | | kwargs: 2024-12-27 09:47:36,628 studio.core DEBUG | | | learner = <azureml.studio.modules.ml.initialize_models.regressor.linear_regressor.linear_regressor.OrdinaryLeastSquaresRegressor object at 0x14911d5b9400> 2024-12-27 09:47:36,629 studio.core DEBUG | | | training_data = <azureml.studio.common.datatable.data_table.DataTable object at 0x14911d183f40> 2024-12-27 09:47:36,629 studio.core DEBUG | | | label_column_index_or_name = <azureml.studio.common.datatable.data_table.DataTableColumnSelection object at 0x14914d44a3a0> 2024-12-27 09:47:36,629 studio.core DEBUG | | | model_explanations = False 2024-12-27 09:47:36,629 studio.core DEBUG | | validated_args: 2024-12-27 09:47:36,629 studio.core DEBUG | | | learner = <azureml.studio.modules.ml.initialize_models.regressor.linear_regressor.linear_regressor.OrdinaryLeastSquaresRegressor object at 0x14911d5b9400> 2024-12-27 09:47:36,629 studio.core DEBUG | | | training_data = <azureml.studio.common.datatable.data_table.DataTable object at 0x14911d183f40> 2024-12-27 09:47:36,629 studio.core DEBUG | | | label_column_index_or_name = <azureml.studio.common.datatable.data_table.DataTableColumnSelection object at 0x14914d44a3a0> 2024-12-27 09:47:36,629 studio.core DEBUG | | | model_explanations = False 2024-12-27 09:47:36,629 studio.module INFO | | Validate input data (learner and training data). 2024-12-27 09:47:36,629 studio.core INFO | | Create deployment handler and inject schema and sample. - Start: 2024-12-27 09:47:36,630 studio.core INFO | | Create deployment handler and inject schema and sample. - End with 0.0010s elapsed. 2024-12-27 09:47:36,630 studio.core INFO | | BaseLearner.train - Start: 2024-12-27 09:47:36,630 studio.module INFO | | | rentals as Label Column. 2024-12-27 09:47:36,632 studio.core INFO | | | Removing instances with illegal label - Start: 2024-12-27 09:47:36,632 studio.module INFO | | | | Remove missing label instances. 2024-12-27 09:47:36,637 studio.core INFO | | | Removing instances with illegal label - End with 0.0052s elapsed. 2024-12-27 09:47:36,637 studio.module INFO | | | validated training data has 512 Row(s) and 12 Columns. 2024-12-27 09:47:36,637 studio.core INFO | | | BaseLearner._normalize_data - Start: 2024-12-27 09:47:36,637 studio.core INFO | | | | BaseLearner._fit_normalize - Start: 2024-12-27 09:47:36,637 studio.core INFO | | | | | Initialing feature normalizer - Start: 2024-12-27 09:47:36,637 studio.module INFO | | | | | | Building Normalizer - found Label column=rentals with encode_label=False 2024-12-27 09:47:36,637 studio.module INFO | | | | | | Building normalizer - found 11 feature columns with normalize_number=True 2024-12-27 09:47:36,637 studio.module DEBUG | | | | | | Building normalizer - found feature columns: "day,mnth,season,holiday,weekday,workingday,weathersit,temp,atemp,hum,windspeed". 2024-12-27 09:47:36,638 studio.module INFO | | | | | | Building normalizer - found 11 numeric feature columns and 0 string feature columns to be encoded 2024-12-27 09:47:36,638 studio.module DEBUG | | | | | | Building normalizer - found numeric feature columns to be encoded: "day,mnth,season,holiday,weekday,workingday,weathersit,temp,atemp,hum,windspeed". 2024-12-27 09:47:36,638 studio.module DEBUG | | | | | | Building normalizer - found string feature columns to be encoded: "". 2024-12-27 09:47:36,638 studio.core INFO | | | | | Initialing feature normalizer - End with 0.0010s elapsed. 2024-12-27 09:47:36,638 studio.core INFO | | | | | Fitting feature normalizer - Start: 2024-12-27 09:47:36,638 studio.core INFO | | | | | | Normalizer._fit_numeric_feature_column_encoders - Start: 2024-12-27 09:47:36,647 studio.module INFO | | | | | | | Successfully fit 11 numeric feature column encoders. 2024-12-27 09:47:36,647 studio.core INFO | | | | | | Normalizer._fit_numeric_feature_column_encoders - End with 0.0086s elapsed. 2024-12-27 09:47:36,647 studio.core INFO | | | | | Fitting feature normalizer - End with 0.0087s elapsed. 2024-12-27 09:47:36,647 studio.core INFO | | | | BaseLearner._fit_normalize - End with 0.0098s elapsed. 2024-12-27 09:47:36,647 studio.core INFO | | | | BaseLearner._apply_normalize - Start: 2024-12-27 09:47:36,647 studio.core INFO | | | | | Applying feature normalization - Start: 2024-12-27 09:47:36,647 studio.module INFO | | | | | | Start to execute normalizer.transform with column_list: "day,mnth,season,holiday,weekday,workingday,weathersit,temp,atemp,hum,windspeed,rentals". 2024-12-27 09:47:36,647 studio.module INFO | | | | | | Columns of input DataFrame: 12 2024-12-27 09:47:36,647 studio.module INFO | | | | | | Columns to be transformed: 12 2024-12-27 09:47:36,647 studio.module INFO | | | | | | Columns to be encoded: 11 2024-12-27 09:47:36,647 studio.module INFO | | | | | | Transform with label column rentals. 2024-12-27 09:47:36,647 studio.core INFO | | | | | | Normalizer._transform_numeric_feature_columns - Start: 2024-12-27 09:47:36,653 studio.module INFO | | | | | | | Successfully encoded 11 numeric feature columns. 2024-12-27 09:47:36,654 studio.core INFO | | | | | | Normalizer._transform_numeric_feature_columns - End with 0.0063s elapsed. 2024-12-27 09:47:36,654 studio.module INFO | | | | | | Construct train set complete. 2024-12-27 09:47:36,654 studio.core INFO | | | | | Applying feature normalization - End with 0.0068s elapsed. 2024-12-27 09:47:36,654 studio.core INFO | | | | BaseLearner._apply_normalize - End with 0.0069s elapsed. 2024-12-27 09:47:36,654 studio.core INFO | | | BaseLearner._normalize_data - End with 0.0168s elapsed. 2024-12-27 09:47:36,654 studio.core INFO | | | Initializing model - Start: 2024-12-27 09:47:36,654 studio.core INFO | | | Initializing model - End with 0.0000s elapsed. 2024-12-27 09:47:36,654 studio.core INFO | | | BaseLearner._train - Start: 2024-12-27 09:47:36,654 studio.core INFO | | | | Training Model - Start: 2024-12-27 09:47:36,656 studio.core INFO | | | | Training Model - End with 0.0016s elapsed. 2024-12-27 09:47:36,656 studio.core INFO | | | BaseLearner._train - End with 0.0017s elapsed. 2024-12-27 09:47:36,656 studio.core INFO | | BaseLearner.train - End with 0.0253s elapsed. 2024-12-27 09:47:36,656 studio.core DEBUG | | return: 2024-12-27 09:47:36,656 studio.core DEBUG | | | [0] = <azureml.studio.modules.ml.initialize_models.regressor.linear_regressor.linear_regressor.OrdinaryLeastSquaresRegressor object at 0x14911d5b9400> 2024-12-27 09:47:36,656 studio.core INFO | TrainModelModule.run - End with 0.0275s elapsed. 2024-12-27 09:47:36,656 studio.core INFO | ModuleReflector._handle_output_ports - Start: 2024-12-27 09:47:36,656 studio.core INFO | | Handle output port "Trained model" - Start: 2024-12-27 09:47:36,656 studio.modulehost INFO | | | Data type: ILearnerDotNet 2024-12-27 09:47:36,656 studio.modulehost INFO | | | Create directory: '/mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/Trained_model' 2024-12-27 09:47:36,656 studio.core INFO | | | Dump file data.ilearner - Start: 2024-12-27 09:47:36,656 studio.modulehost INFO | | | | Write learner 2024-12-27 09:47:36,657 studio.core INFO | | | Dump file data.ilearner - End with 0.0007s elapsed. 2024-12-27 09:47:37,429 studio.common INFO | | | Writing meta successfully, datatype=DataTypes.LEARNER 2024-12-27 09:47:37,429 studio.core INFO | | Handle output port "Trained model" - End with 0.7732s elapsed. 2024-12-27 09:47:37,429 studio.core INFO | ModuleReflector._handle_output_ports - End with 0.7734s elapsed. 2024-12-27 09:47:37,429 studio.core INFO | ModuleStatistics.save_to_azureml - Start: 2024-12-27 09:47:37,594 studio.core INFO | ModuleStatistics.save_to_azureml - End with 0.1646s elapsed. 2024-12-27 09:47:37,595 studio.core INFO execute_with_cli - End with 2.6943s elapsed. Cleaning up all outstanding Run operations, waiting 300.0 seconds 1 items cleaning up... Cleanup took 0.04007577896118164 seconds Traceback (most recent call last): File "urldecode_invoker.py", line 130, in <module> execute(decoded_args) File "urldecode_invoker.py", line 74, in execute exit(ret) File "/azureml-envs/azureml_862fbd3b8df44d2c582aa46cf5a23700/lib/python3.8/_sitebuiltins.py", line 26, in __call__ raise SystemExit(code) SystemExit: 0 |
文章评论