Cloud Native应用交付

  • 首页
  • 关于本站
  • 个人介绍
  • Downloads
  • Repo
    • Github
    • Container
  • F5
    • F5 Python SDK
    • F5-container
    • F5-LBaaS
  • 社交
    • 联系我
    • 微信/微博
    • 公众号
    • 打赏赞助
行至水穷处 坐看云起时
Cloud Native Application Services: cnadn.net
  1. 首页
  2. AI
  3. 正文

在Azure ML designer中利用线性回归算法训练预测模型

2024年12月27日 853点热度 0人点赞 0条评论

scored labels result:

evaluation results:

running logs:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
Failure while loading azureml_run_type_providers. Failed to load entrypoint azureml.PipelineRun = azureml.pipeline.core.run:PipelineRun._from_dto with exception (azureml-core 1.47.0 (/azureml-envs/azureml_862fbd3b8df44d2c582aa46cf5a23700/lib/python3.8/site-packages), Requirement.parse('azureml-core~=1.54.0')).
Failure while loading azureml_run_type_providers. Failed to load entrypoint azureml.ReusedStepRun = azureml.pipeline.core.run:StepRun._from_reused_dto with exception (azureml-core 1.47.0 (/azureml-envs/azureml_862fbd3b8df44d2c582aa46cf5a23700/lib/python3.8/site-packages), Requirement.parse('azureml-core~=1.54.0')).
Failure while loading azureml_run_type_providers. Failed to load entrypoint azureml.StepRun = azureml.pipeline.core.run:StepRun._from_dto with exception (azureml-core 1.47.0 (/azureml-envs/azureml_862fbd3b8df44d2c582aa46cf5a23700/lib/python3.8/site-packages), Requirement.parse('azureml-core~=1.54.0')).
Failure while loading azureml_run_type_providers. Failed to load entrypoint azureml.scriptrun = azureml.core.script_run:ScriptRun._from_run_dto with exception (cryptography 42.0.4 (/azureml-envs/azureml_862fbd3b8df44d2c582aa46cf5a23700/lib/python3.8/site-packages), Requirement.parse('cryptography!=1.9,!=2.0.*,!=2.1.*,!=2.2.*,<41')).
Session_id = 9f298848-ea03-489c-86b5-d39308b98481
Invoking module by urldecode_invoker 0.0.8.
 
Module type: official module.
 
Using runpy to invoke module 'azureml.studio.modulehost.module_invoker'.
 
2024-12-27 09:47:34,900 studio.modulehost    INFO       Reset logging level to DEBUG
2024-12-27 09:47:34,900 studio.modulehost    INFO       Load pyarrow.parquet explicitly: <module 'pyarrow.parquet' from '/azureml-envs/azureml_862fbd3b8df44d2c582aa46cf5a23700/lib/python3.8/site-packages/pyarrow/parquet/__init__.py'>
2024-12-27 09:47:34,900 studio.core          INFO       execute_with_cli - Start:
2024-12-27 09:47:34,900 studio.modulehost    INFO       |   ALGHOST 0.0.182
RuntimeError: module compiled against API version 0x10 but this version of numpy is 0xf . Check the section C-API incompatibility at the Troubleshooting ImportError section at https://numpy.org/devdocs/user/troubleshooting-importerror.html#c-api-incompatibility for indications on how to solve this problem .
IPython could not be loaded!
2024-12-27 09:47:36,155 studio.modulehost    INFO       |   CLI arguments parsed: {'module_name': 'azureml.studio.modules.ml.train.train_generic_model.train_generic_model', 'OutputPortsInternal': {'Trained model': '/mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/Trained_model'}, 'InputPortsInternal': {'Untrained model': '/mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Untrained_model', 'Dataset': '/mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Dataset'}, 'ModuleParameters': {'Label column': '%7B%22isFilter%22%3Atrue%2C%22rules%22%3A%5B%7B%22exclude%22%3Afalse%2C%22ruleType%22%3A%22ColumnNames%22%2C%22columns%22%3A%5B%22rentals%22%5D%7D%5D%7D', 'Model explanations': 'False'}}
2024-12-27 09:47:36,357 studio.modulehost    INFO       |   Invoking ModuleEntry(azureml.studio.modules.ml.train.train_generic_model.train_generic_model; TrainModelModule; run)
2024-12-27 09:47:36,357 studio.core          DEBUG      |   Input Ports:
2024-12-27 09:47:36,357 studio.core          DEBUG      |   |   Untrained model = <azureml.studio.modulehost.cli_parser.CliInputValue object at 0x14911d5b93d0>
2024-12-27 09:47:36,357 studio.core          DEBUG      |   |   Dataset = <azureml.studio.modulehost.cli_parser.CliInputValue object at 0x14911d5b9460>
2024-12-27 09:47:36,357 studio.core          DEBUG      |   Output Ports:
2024-12-27 09:47:36,357 studio.core          DEBUG      |   |   Trained model = /mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/Trained_model
2024-12-27 09:47:36,357 studio.core          DEBUG      |   Parameters:
2024-12-27 09:47:36,357 studio.core          DEBUG      |   |   Label column = %7B%22isFilter%22%3Atrue%2C%22rules%22%3A%5B%7B%22exclude%22%3Afalse%2C%22ruleType%22%3A%22ColumnNames%22%2C%22columns%22%3A%5B%22rentals%22%5D%7D%5D%7D
2024-12-27 09:47:36,357 studio.core          DEBUG      |   |   Model explanations = False
2024-12-27 09:47:36,358 studio.core          DEBUG      |   Environment Variables:
2024-12-27 09:47:36,358 studio.core          DEBUG      |   |   AZUREML_DATAREFERENCE_DATASET = /mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Dataset
2024-12-27 09:47:36,358 studio.core          DEBUG      |   |   AZUREML_DATAREFERENCE_Dataset = /mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Dataset
2024-12-27 09:47:36,358 studio.core          DEBUG      |   |   AZUREML_DATAREFERENCE_UNTRAINED_MODEL = /mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Untrained_model
2024-12-27 09:47:36,358 studio.core          DEBUG      |   |   AZUREML_DATAREFERENCE_Untrained_model = /mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Untrained_model
2024-12-27 09:47:36,358 studio.core          INFO       |   Reflect input ports and parameters - Start:
2024-12-27 09:47:36,358 studio.core          INFO       |   |   Handle input port "Untrained model" - Start:
2024-12-27 09:47:36,358 studio.core          INFO       |   |   |   Mount/Download dataset to '/mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Untrained_model' - Start:
2024-12-27 09:47:36,358 studio.modulehost    DEBUG      |   |   |   |   Content of directory /mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Untrained_model:
2024-12-27 09:47:36,364 studio.modulehost    DEBUG      |   |   |   |   |   _meta.yaml
2024-12-27 09:47:36,364 studio.modulehost    DEBUG      |   |   |   |   |   data.ilearner
2024-12-27 09:47:36,364 studio.modulehost    DEBUG      |   |   |   |   |   model_spec.yaml
2024-12-27 09:47:36,364 studio.core          INFO       |   |   |   Mount/Download dataset to '/mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Untrained_model' - End with 0.0061s elapsed.
2024-12-27 09:47:36,369 studio.core          INFO       |   |   |   Try to read from /mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Untrained_model via meta - Start:
2024-12-27 09:47:36,411 studio.common        INFO       |   |   |   |   Load meta data from directory successfully, data=ModelDirectory(meta={'type': 'ModelDirectory', 'extension': {}, 'model': 'model_spec.yaml'}), type=<class 'azureml.studio.core.io.model_directory.ModelDirectory'>
2024-12-27 09:47:36,411 studio.common        INFO       |   |   |   |   Load ModelDirectory successfully, data=<azureml.studio.modules.ml.initialize_models.regressor.linear_regressor.linear_regressor.OrdinaryLeastSquaresRegressor object at 0x14911d5b9400>
2024-12-27 09:47:36,411 studio.core          INFO       |   |   |   Try to read from /mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Untrained_model via meta - End with 0.0417s elapsed.
2024-12-27 09:47:36,411 studio.core          INFO       |   |   Handle input port "Untrained model" - End with 0.0531s elapsed.
2024-12-27 09:47:36,411 studio.core          INFO       |   |   Handle input port "Dataset" - Start:
2024-12-27 09:47:36,411 studio.core          INFO       |   |   |   Mount/Download dataset to '/mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Dataset' - Start:
2024-12-27 09:47:36,411 studio.modulehost    DEBUG      |   |   |   |   Content of directory /mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Dataset:
2024-12-27 09:47:36,427 studio.modulehost    DEBUG      |   |   |   |   |   _meta.yaml
2024-12-27 09:47:36,427 studio.modulehost    DEBUG      |   |   |   |   |   _samples.json
2024-12-27 09:47:36,427 studio.modulehost    DEBUG      |   |   |   |   |   data.dataset
2024-12-27 09:47:36,427 studio.modulehost    DEBUG      |   |   |   |   |   data.dataset.parquet
2024-12-27 09:47:36,427 studio.modulehost    DEBUG      |   |   |   |   |   data.visualization
2024-12-27 09:47:36,432 studio.modulehost    DEBUG      |   |   |   |   |   schema/_schema.json
2024-12-27 09:47:36,432 studio.core          INFO       |   |   |   Mount/Download dataset to '/mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Dataset' - End with 0.0204s elapsed.
2024-12-27 09:47:36,437 studio.core          INFO       |   |   |   Try to read from /mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Dataset via meta - Start:
2024-12-27 09:47:36,607 studio.common        INFO       |   |   |   |   Load DataTableMeta successfully, path=data.dataset
2024-12-27 09:47:36,609 studio.common        INFO       |   |   |   |   Load meta data from directory successfully, data=DataFrameDirectory(meta={'type': 'DataFrameDirectory', 'visualization': [{'type': 'Visualization', 'path': 'data.visualization'}], 'extension': {'DataTableMeta': 'data.dataset'}, 'format': 'Parquet', 'data': 'data.dataset.parquet', 'samples': '_samples.json', 'schema': 'schema/_schema.json'}), type=<class 'azureml.studio.common.datatable.data_table_directory.DataTableDirectory'>
2024-12-27 09:47:36,627 studio.core          INFO       |   |   |   Try to read from /mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/INPUT_Dataset via meta - End with 0.1898s elapsed.
2024-12-27 09:47:36,627 studio.core          INFO       |   |   Handle input port "Dataset" - End with 0.2160s elapsed.
2024-12-27 09:47:36,628 studio.modulehost    INFO       |   |   Parse ColumnSelection parameter
2024-12-27 09:47:36,628 studio.modulehost    INFO       |   |   Parse bool parameter
2024-12-27 09:47:36,628 studio.core          INFO       |   Reflect input ports and parameters - End with 0.2704s elapsed.
2024-12-27 09:47:36,628 studio.core          INFO       |   TrainModelModule.run - Start:
2024-12-27 09:47:36,628 studio.core          DEBUG      |   |   kwargs:
2024-12-27 09:47:36,628 studio.core          DEBUG      |   |   |   learner = <azureml.studio.modules.ml.initialize_models.regressor.linear_regressor.linear_regressor.OrdinaryLeastSquaresRegressor object at 0x14911d5b9400>
2024-12-27 09:47:36,629 studio.core          DEBUG      |   |   |   training_data = <azureml.studio.common.datatable.data_table.DataTable object at 0x14911d183f40>
2024-12-27 09:47:36,629 studio.core          DEBUG      |   |   |   label_column_index_or_name = <azureml.studio.common.datatable.data_table.DataTableColumnSelection object at 0x14914d44a3a0>
2024-12-27 09:47:36,629 studio.core          DEBUG      |   |   |   model_explanations = False
2024-12-27 09:47:36,629 studio.core          DEBUG      |   |   validated_args:
2024-12-27 09:47:36,629 studio.core          DEBUG      |   |   |   learner = <azureml.studio.modules.ml.initialize_models.regressor.linear_regressor.linear_regressor.OrdinaryLeastSquaresRegressor object at 0x14911d5b9400>
2024-12-27 09:47:36,629 studio.core          DEBUG      |   |   |   training_data = <azureml.studio.common.datatable.data_table.DataTable object at 0x14911d183f40>
2024-12-27 09:47:36,629 studio.core          DEBUG      |   |   |   label_column_index_or_name = <azureml.studio.common.datatable.data_table.DataTableColumnSelection object at 0x14914d44a3a0>
2024-12-27 09:47:36,629 studio.core          DEBUG      |   |   |   model_explanations = False
2024-12-27 09:47:36,629 studio.module        INFO       |   |   Validate input data (learner and training data).
2024-12-27 09:47:36,629 studio.core          INFO       |   |   Create deployment handler and inject schema and sample. - Start:
2024-12-27 09:47:36,630 studio.core          INFO       |   |   Create deployment handler and inject schema and sample. - End with 0.0010s elapsed.
2024-12-27 09:47:36,630 studio.core          INFO       |   |   BaseLearner.train - Start:
2024-12-27 09:47:36,630 studio.module        INFO       |   |   |   rentals as Label Column.
2024-12-27 09:47:36,632 studio.core          INFO       |   |   |   Removing instances with illegal label - Start:
2024-12-27 09:47:36,632 studio.module        INFO       |   |   |   |   Remove missing label instances.
2024-12-27 09:47:36,637 studio.core          INFO       |   |   |   Removing instances with illegal label - End with 0.0052s elapsed.
2024-12-27 09:47:36,637 studio.module        INFO       |   |   |   validated training data has 512 Row(s) and 12 Columns.
2024-12-27 09:47:36,637 studio.core          INFO       |   |   |   BaseLearner._normalize_data - Start:
2024-12-27 09:47:36,637 studio.core          INFO       |   |   |   |   BaseLearner._fit_normalize - Start:
2024-12-27 09:47:36,637 studio.core          INFO       |   |   |   |   |   Initialing feature normalizer - Start:
2024-12-27 09:47:36,637 studio.module        INFO       |   |   |   |   |   |   Building Normalizer - found Label column=rentals with encode_label=False
2024-12-27 09:47:36,637 studio.module        INFO       |   |   |   |   |   |   Building normalizer - found 11 feature columns with normalize_number=True
2024-12-27 09:47:36,637 studio.module        DEBUG      |   |   |   |   |   |   Building normalizer - found feature columns: "day,mnth,season,holiday,weekday,workingday,weathersit,temp,atemp,hum,windspeed".
2024-12-27 09:47:36,638 studio.module        INFO       |   |   |   |   |   |   Building normalizer - found 11 numeric feature columns and 0 string feature columns to be encoded
2024-12-27 09:47:36,638 studio.module        DEBUG      |   |   |   |   |   |   Building normalizer - found numeric feature columns to be encoded: "day,mnth,season,holiday,weekday,workingday,weathersit,temp,atemp,hum,windspeed".
2024-12-27 09:47:36,638 studio.module        DEBUG      |   |   |   |   |   |   Building normalizer - found string feature columns to be encoded: "".
2024-12-27 09:47:36,638 studio.core          INFO       |   |   |   |   |   Initialing feature normalizer - End with 0.0010s elapsed.
2024-12-27 09:47:36,638 studio.core          INFO       |   |   |   |   |   Fitting feature normalizer - Start:
2024-12-27 09:47:36,638 studio.core          INFO       |   |   |   |   |   |   Normalizer._fit_numeric_feature_column_encoders - Start:
2024-12-27 09:47:36,647 studio.module        INFO       |   |   |   |   |   |   |   Successfully fit 11 numeric feature column encoders.
2024-12-27 09:47:36,647 studio.core          INFO       |   |   |   |   |   |   Normalizer._fit_numeric_feature_column_encoders - End with 0.0086s elapsed.
2024-12-27 09:47:36,647 studio.core          INFO       |   |   |   |   |   Fitting feature normalizer - End with 0.0087s elapsed.
2024-12-27 09:47:36,647 studio.core          INFO       |   |   |   |   BaseLearner._fit_normalize - End with 0.0098s elapsed.
2024-12-27 09:47:36,647 studio.core          INFO       |   |   |   |   BaseLearner._apply_normalize - Start:
2024-12-27 09:47:36,647 studio.core          INFO       |   |   |   |   |   Applying feature normalization - Start:
2024-12-27 09:47:36,647 studio.module        INFO       |   |   |   |   |   |   Start to execute normalizer.transform with column_list: "day,mnth,season,holiday,weekday,workingday,weathersit,temp,atemp,hum,windspeed,rentals".
2024-12-27 09:47:36,647 studio.module        INFO       |   |   |   |   |   |   Columns of input DataFrame: 12
2024-12-27 09:47:36,647 studio.module        INFO       |   |   |   |   |   |   Columns to be transformed: 12
2024-12-27 09:47:36,647 studio.module        INFO       |   |   |   |   |   |   Columns to be encoded: 11
2024-12-27 09:47:36,647 studio.module        INFO       |   |   |   |   |   |   Transform with label column rentals.
2024-12-27 09:47:36,647 studio.core          INFO       |   |   |   |   |   |   Normalizer._transform_numeric_feature_columns - Start:
2024-12-27 09:47:36,653 studio.module        INFO       |   |   |   |   |   |   |   Successfully encoded 11 numeric feature columns.
2024-12-27 09:47:36,654 studio.core          INFO       |   |   |   |   |   |   Normalizer._transform_numeric_feature_columns - End with 0.0063s elapsed.
2024-12-27 09:47:36,654 studio.module        INFO       |   |   |   |   |   |   Construct train set complete.
2024-12-27 09:47:36,654 studio.core          INFO       |   |   |   |   |   Applying feature normalization - End with 0.0068s elapsed.
2024-12-27 09:47:36,654 studio.core          INFO       |   |   |   |   BaseLearner._apply_normalize - End with 0.0069s elapsed.
2024-12-27 09:47:36,654 studio.core          INFO       |   |   |   BaseLearner._normalize_data - End with 0.0168s elapsed.
2024-12-27 09:47:36,654 studio.core          INFO       |   |   |   Initializing model - Start:
2024-12-27 09:47:36,654 studio.core          INFO       |   |   |   Initializing model - End with 0.0000s elapsed.
2024-12-27 09:47:36,654 studio.core          INFO       |   |   |   BaseLearner._train - Start:
2024-12-27 09:47:36,654 studio.core          INFO       |   |   |   |   Training Model - Start:
2024-12-27 09:47:36,656 studio.core          INFO       |   |   |   |   Training Model - End with 0.0016s elapsed.
2024-12-27 09:47:36,656 studio.core          INFO       |   |   |   BaseLearner._train - End with 0.0017s elapsed.
2024-12-27 09:47:36,656 studio.core          INFO       |   |   BaseLearner.train - End with 0.0253s elapsed.
2024-12-27 09:47:36,656 studio.core          DEBUG      |   |   return:
2024-12-27 09:47:36,656 studio.core          DEBUG      |   |   |   [0] = <azureml.studio.modules.ml.initialize_models.regressor.linear_regressor.linear_regressor.OrdinaryLeastSquaresRegressor object at 0x14911d5b9400>
2024-12-27 09:47:36,656 studio.core          INFO       |   TrainModelModule.run - End with 0.0275s elapsed.
2024-12-27 09:47:36,656 studio.core          INFO       |   ModuleReflector._handle_output_ports - Start:
2024-12-27 09:47:36,656 studio.core          INFO       |   |   Handle output port "Trained model" - Start:
2024-12-27 09:47:36,656 studio.modulehost    INFO       |   |   |   Data type: ILearnerDotNet
2024-12-27 09:47:36,656 studio.modulehost    INFO       |   |   |   Create directory: '/mnt/azureml/cr/j/238106928513406aada505c2bb655d5b/cap/data-capability/wd/Trained_model'
2024-12-27 09:47:36,656 studio.core          INFO       |   |   |   Dump file data.ilearner - Start:
2024-12-27 09:47:36,656 studio.modulehost    INFO       |   |   |   |   Write learner
2024-12-27 09:47:36,657 studio.core          INFO       |   |   |   Dump file data.ilearner - End with 0.0007s elapsed.
2024-12-27 09:47:37,429 studio.common        INFO       |   |   |   Writing meta successfully, datatype=DataTypes.LEARNER
2024-12-27 09:47:37,429 studio.core          INFO       |   |   Handle output port "Trained model" - End with 0.7732s elapsed.
2024-12-27 09:47:37,429 studio.core          INFO       |   ModuleReflector._handle_output_ports - End with 0.7734s elapsed.
2024-12-27 09:47:37,429 studio.core          INFO       |   ModuleStatistics.save_to_azureml - Start:
2024-12-27 09:47:37,594 studio.core          INFO       |   ModuleStatistics.save_to_azureml - End with 0.1646s elapsed.
2024-12-27 09:47:37,595 studio.core          INFO       execute_with_cli - End with 2.6943s elapsed.
Cleaning up all outstanding Run operations, waiting 300.0 seconds
1 items cleaning up...
Cleanup took 0.04007577896118164 seconds
Traceback (most recent call last):
  File "urldecode_invoker.py", line 130, in <module>
    execute(decoded_args)
  File "urldecode_invoker.py", line 74, in execute
    exit(ret)
  File "/azureml-envs/azureml_862fbd3b8df44d2c582aa46cf5a23700/lib/python3.8/_sitebuiltins.py", line 26, in __call__
    raise SystemExit(code)
SystemExit: 0
 
 
 

相关文章

  • Small step in Data and AI- Azure Certificated
  • Use Azure cognitive to analyze image
  • 在Azure ML designer中利用2-class logistic regression做Classification模型
  • Use Azure custom vision to do object detection
  • Using Azure cognitive service to do face detection
本作品采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可
标签: azure ml
最后更新:2024年12月27日

纳米

linjing.io

打赏 点赞
< 上一篇
下一篇 >

文章评论

razz evil exclaim smile redface biggrin eek confused idea lol mad twisted rolleyes wink cool arrow neutral cry mrgreen drooling persevering
取消回复

这个站点使用 Akismet 来减少垃圾评论。了解你的评论数据如何被处理。

页面AI聊天助手

纳米

linjing.io

☁️迈向Cloud Native ADC ☁️

认证获得:
TOGAF: ID 152743
Kubernetes: CKA #664
Microsoft: MCSE MCDBA
Cisco: CCNP
Juniper: JNCIS
F5:
F5 Certified Solution Expert, Security
F5 Certified Technology Specialist, LTM/GTM/APM/ASM
F5 Certified BIG-IP Administrator
  • 点击查看本博技术要素列表
  • 归档
    分类
    • AI
    • Automation
    • Avi Networks
    • Cisco ACI
    • CISCO资源
    • F5 with ELK
    • F5-Tech tips
    • F5技术
    • Juniper
    • Linux
    • NGINX
    • SDN
    • ServiceMesh
    • WEB编程
    • WINDOWS相关
    • 业界文章
    • 交换机技术
    • 化云为雨/Openstack
    • 协议原理
    • 容器/k8s
    • 我的工作
    • 我的生活
    • 网站技术
    • 路由器技术
    • 项目案例
    标签聚合
    gtm nginx openstack api flannel neutron k8s F5 docker network bigip DNS envoy istio irule
    最近评论
    汤姆 发布于 8 个月前(09月10日) 嗨,楼主,里面的json怎么下载啊,怎么收费啊?
    汤姆 发布于 8 个月前(09月09日) 大佬,kib的页面可以分享下吗?谢谢
    zhangsha 发布于 1 年前(05月12日) 资料发给我下,谢谢纳米同志!!!!lyx895@qq.com
    李成才 发布于 1 年前(01月02日) 麻烦了,谢谢大佬
    纳米 发布于 1 年前(01月02日) 你好。是的,因为以前下载系统插件在一次升级后将所有的下载生成信息全弄丢了。所以不少文件无法下载。DN...
    浏览次数
    • Downloads - 183,650 views
    • 联系我 - 118,966 views
    • 迄今为止最全最深入的BIGIP-DNS/GTM原理及培训资料 - 116,201 views
    • Github - 103,543 views
    • F5常见log日志解释 - 79,727 views
    • 从传统ADC迈向CLOUD NATIVE ADC - 下载 - 74,503 views
    • Sniffer Pro 4 70 530抓包软件 中文版+视频教程 - 74,320 views
    • 迄今为止最全最深入的BIGIP-DNS/GTM原理及培训资料 - 67,770 views
    • 关于本站 - 60,798 views
    • 这篇文档您是否感兴趣 - 55,463 views
    链接表
    • F5SE创新
    • Jimmy Song‘s Blog
    • SDNlab
    • Service Mesh社区
    • 三斗室
    • 个人profile
    • 云原生社区

    COPYRIGHT © 2023 Cloud Native 应用交付. ALL RIGHTS RESERVED.

    Theme Kratos Made By Seaton Jiang

    京ICP备14048088号-1

    京公网安备 11010502041506号